An incorrectly written symbol, e.g. NA or CL, should be penalised once in the paper.

1	(a) (i)	coal or coke or peat NOT wood or charcoal	[1]

- (ii) natural gas or methane or propane or butane or petroleum gases or calor gas or refinery gas
 [1]
- (b) (i) petrol or gasoline paraffin or kerosene diesel aviation fuel or jet fuel fuel oil heavy fuel oil heating oil Any TWO
 [2] NOT a named alkane e.g. octane
 - (ii) waxes or grease or lubricants or polishes or bitumen (tar, asphalt) or naphtha [2] Any **TWO** from the primary or secondary distillation of petroleum
 - (iii) (liquid) air or ethanol and water or alkenes (made by cracking) or Noble Gases [1]

[Total: 7]

acceptable responses.	[Total: 5]
filtration NOTE As the candidate are selecting from a list, the above are the only	[1]
crystallisation fractional distillation	[1]
<u>simple distillation</u> diffusion or fractional distillation	[1] [1]

2

3 (a Match the following pH values to the solutions given below.

1 3 7 10 13 The solutions all have the same concentration.

	solution aqueous ammonia, weak base dilute hydrochloric acid, a strong acid aqueous sodium hydroxide, a strong base aqueous sodium chloride, a salt dilute ethanoic acid, a weak acid	pH 10 1 13 7 3	[5]	
(b)	 Hydrochloric acid strong acid or ethanoic acid weak acid OR: hydrochloric acid completely ionised or ethanoic acid partially ionised 		[1]	
	hydrochloric acid greater concentration of/more H' ions (t	han ethanoic acid)	[1]	
(c)	Rate of reaction with Ca, Mg, Zn, Fe		[1]	
	Strong (hydrochloric) acid bubbles faster or more bubbles or dissolves faster		[1]	
	OR: rate of reaction with (metal) carbonate		[1]	
	carbonate insoluble)			
	OR: electrical conductivity strong (hydrochloric) acid better conductor		[1] [1]	

[Total: 9]

4	(a	(i)	3	[1]
		(ii)	70	[1]
	(b)	Ado	d octane (or other liquid hydrocarbon) (to soot)	[1]
		CO	ND(on addition of any solvent) filter (to remove insoluble forms of carbon)	[1]
		(allo	ow to) evaporate or heat or warm or leave in sun(to get crystals of fullerene)	[1]
	(c)		graphite	[1]
		(ii)	delocalised electrons/free electrons/sea of electrons	[1]
			COND (on electrons) move/mobile/electrons flow	[1]
		(iii)	Any two from: potassium oxide potassium hydroxide potassium carbonate potassium hydrogencarbonate (bicarbonate)	[2]

[Total: 10]

5	(a	(i)	CH ₃ COOCH ₂ CH ₃ / CH ₃ CO ₂ CH ₂ CH ₃ / CH ₃ COOC ₂ H ₅ / CH ₃ CO ₂ C ₂ H ₅ / C ₂ H ₅ OOCCH ₃ / CH ₃ CH ₂ OOCCH ₃ not: –OCO– linkage note: formulae can be displayed or semi-displayed note: penalise sticks (i.e. any missing atoms)	[1]
		(ii)	butyl methanoate	[1]
	(b)	(i)	fats / <u>vegetable</u> oils / triglycerides / lipids	[1]
		(ii)	two correct ester linkages, e.g. –OOC / –O ₂ C and –COO / –CO ₂	[1]
			contents of the 'boxes' being C_6H_4 and C_2H_4 or CH_2CH_2 continuation bonds at both ends	[1] [1]
	(c)		to make colourless / invisible (spots) visible / coloured / seen / position made clear / indicate	[1] [1]
		(ii)	$\frac{\text{distance travelled by sample}}{\text{distance travelled by solvent (front)}} = R_{\text{f}}$	[1]
	((iii)	sample 1 $R_{\rm f}$ = 0.20 to 0.24 tartaric (acid) sample 2 $R_{\rm f}$ = 0.44 to 0.48 malic (acid)	[1] [1]

6	(a (i)	oxygen; [1] carbon dioxide / fluorine / carbon monoxide; [1]	
	(ii)	decrease mpt (of alumina/ Al_2O_3) / lower (operating) temperature (from 1900/2100 (°C) to 800/1000 (°C) / reduce energy (accept heat or electrical) requirement; [1] improve conductivity / dissolves the Al_2O_3 / acts as solvent; (allow: makes aluminium oxide conduct / to conduct electricity / making ions free to move) [1]	
	(iii)	Al_2O_3 (accept alumina) reacts / dissolves / forms a salt and water / is neutralised; [1] (Fe ₂ O ₃ removed by) filtration / centrifugation / decantation; [1]	
	(b) (i)	electrolysis / electrolyte / electrodes / anode / cathode / electricity / cell; [1] chlorine formed at anode (positive electrode); (note: can be awarded from a correct or incorrect equation with Cl_2 as the only substance on the right as long as anode is mentioned.) [1] <u>hydrogen formed at cathode (negative electrode)</u> ; (note: can be awarded from a correct or incorrect equation with H ₂ as the only substance on the right as long as cathode is mentioned.) [1] one correct half equation either $2Cl \rightarrow Cl_2 + 2e$ or $2H^+ + 2e \rightarrow H_2$ [1] solution remaining contains Na ⁺ and OH / sodium and hydroxide ions / NaOH / sodium hydroxide left behind/remains in solution; [1]	
		electrolysis / electrolyte / electrodes / anode / cathode / electricity / cell; [1] <u>chlorine formed at anode (positive electrode)</u> ; (note: can be awarded from a correct or incorrect equation with Cl_2 as the only substance on the right as long as anode is mentioned.) [1] <u>sodium formed at cathode</u> ; (note: can be awarded from a correct or incorrect equation with Na as the only substance on the right as long as cathode is mentioned.) [1] one correct half equation at anode i.e. $2Cl \rightarrow Cl_2 + 2e$ or at cathode Na ⁺ + $e \rightarrow$ Na (accept: equivalent with NaHg amalgam) [1] NaOH/sodium hydroxide is formed by sodium/sodium mercury amalgam reacting with or when added to water; [1]	

note: award the fourth and fifth mark if correct equation given for reaction between sodium or sodium mercury amalgam reacting with water i.e.

 $2Na(Hg) + 2H_2O \rightarrow 2NaOH + H_2 + (2Hg)$

(ii) H₂ / H / hydrogen and making ammonia / making margarine / hardening fats / fuel / energy source / cryogenics / welding; [1] Cl₂ / Cl / chlorine and (making) bleach / water treatment / kill bacteria (in water) / water purification / swimming pools / making solvents / making PVC / making weed killer / making disinfectants / making hydrochloric acid / HCl / making herbicides / pesticides / insecticides; [1]